PhD and Postdoc positions in robot learning and adaptive control at Idiap/EPFL
Country/Region : Switzerland
Website : https://www.idiap.ch
Description
The Robot Learning & Interaction Group at the Idiap Research Institute (http://idiap.ch) in Switzerland has two open positions within the new MEMMO (Memory of Motion) ICT-H2020 European project, in collaboration with 9 other partners (LAAS-CNRS, University of Edinburgh, Max Planck Institute Tuebingen, University of Oxford, PAL Robotics, Airbus Group, Wandercraft, CMPR Pionsat and Costain Group). The project will start in early 2018. The PhD Student and Postdoc will work in tight collaborations with the other partners in the project.
The ideal PhD candidate should hold a MS degree in computer science, engineering, physics or applied mathematics, with a background in linear algebra, statistics, optimization, signal processing, control and programming. The PhD position is for 4 years, provided successful progress, and should lead to a dissertation. The selected candidates will become doctoral students at EPFL provided acceptance by the Doctoral School at EPFL (http://phd.epfl.ch/applicants). Annual gross salary ranges from 47,000 CHF (first year) to 50,000 CHF (last year).
The ideal Postdoc candidate should hold a PhD degree in computer science, engineering, physics or applied mathematics, with a background in linear algebra, statistics, optimization, signal processing, control and programming. The Postdoc position is from one to two years. The starting date can be discussed. Annual gross salary is 80,000 CHF. Part time employment is possible if desired.
Interested candidates should submit a cover letter, a detailed CV, and the names of three references (or recommendation letters) through the Idiap online recruitment system: http://www.idiap.ch/education-and-jobs/job-10224, http://www.idiap.ch/education-and-jobs/job-10225. Contact for further information: sylvain.calinon-AT-idiap.ch
Interviews will start on *November 6, 2017*. Late applications will be treated depending on whether the positions have been filled or not.
---
About MEMMO:
Based on optimal-control theory, the goal of MEMMO is to develop a unified yet tractable approach to motion generation for complex robots with arms and legs. The approach relies on three innovative components: 1) a massive amount of pre-computed optimal motions are generated offline and compressed into a "memory of motion"; 2) these trajectories are recovered during execution and adapted to new situations with real-time model predictive control, with generalization to dynamically changing environments; and 3) available sensor modalities (vision, inertial, haptic) are exploited for feedback control which goes beyond the basic robot state with a focus on robust and adaptive behavior.
MEMMO is organized around 3 applications designed by the end-user partners of the project: 1) a humanoid robot performing advanced locomotion and industrial tooling tasks for aircraft assembly; 2) an advanced exoskeleton paired with a paraplegic patient demonstrating dynamic walking on flat floor, slopes and stairs in a rehabilitation center; and 3) a quadruped robot performing inspection tasks in a construction site.
In MEMMO, Idiap is responsible of the research aspects related to the representation and encoding of movements. The objective is to compress motion data for fast recognition and adaptive motion synthesis. This will be achieved by extracting invariant structures in a probabilistic form that can be used to generalize movements to new situations (new environments, new contexts, new initial conditions). Models will be developed to facilitate integration between learning and control, with trajectory distributions (incl. the underlying cost functions) that are adapted to the current situation and can be used to quickly generate trajectory samples for further optimization.
---
About Idiap:
Idiap is an independent, not-for-profit, research institute recognized and funded by the Swiss Federal Government, the State of Valais, and the City of Martigny. Idiap offers competitive salaries and conditions at all levels in a young, high-quality, dynamic, and multicultural environment. Idiap is an equal opportunity employer and is actively involved in the "Advancement of Women in Science" European initiative. The Institute seeks to maintain a principle of open competition (on the basis of merit) to appoint the best candidate, provides equal opportunity for all candidates, and equally encourage both genders to apply.
Idiap is located in the town of Martigny in Valais, a scenic region in the south of Switzerland, surrounded by the highest mountains of Europe, and offering exceptional quality of life, exciting recreational activities, including hiking, climbing and skiing, as well as varied cultural activities. It is within close proximity to Lausanne and Geneva. Although Idiap is located in the French part of Switzerland, English is the official working language. Free French lessons are also provided on a complimentary basis.
For frequently asked questions (FAQs) about living in Switzerland, please go to http://www.idiap.ch/en/faq
The ideal PhD candidate should hold a MS degree in computer science, engineering, physics or applied mathematics, with a background in linear algebra, statistics, optimization, signal processing, control and programming. The PhD position is for 4 years, provided successful progress, and should lead to a dissertation. The selected candidates will become doctoral students at EPFL provided acceptance by the Doctoral School at EPFL (http://phd.epfl.ch/applicants). Annual gross salary ranges from 47,000 CHF (first year) to 50,000 CHF (last year).
The ideal Postdoc candidate should hold a PhD degree in computer science, engineering, physics or applied mathematics, with a background in linear algebra, statistics, optimization, signal processing, control and programming. The Postdoc position is from one to two years. The starting date can be discussed. Annual gross salary is 80,000 CHF. Part time employment is possible if desired.
Interested candidates should submit a cover letter, a detailed CV, and the names of three references (or recommendation letters) through the Idiap online recruitment system: http://www.idiap.ch/education-and-jobs/job-10224, http://www.idiap.ch/education-and-jobs/job-10225. Contact for further information: sylvain.calinon-AT-idiap.ch
Interviews will start on *November 6, 2017*. Late applications will be treated depending on whether the positions have been filled or not.
---
About MEMMO:
Based on optimal-control theory, the goal of MEMMO is to develop a unified yet tractable approach to motion generation for complex robots with arms and legs. The approach relies on three innovative components: 1) a massive amount of pre-computed optimal motions are generated offline and compressed into a "memory of motion"; 2) these trajectories are recovered during execution and adapted to new situations with real-time model predictive control, with generalization to dynamically changing environments; and 3) available sensor modalities (vision, inertial, haptic) are exploited for feedback control which goes beyond the basic robot state with a focus on robust and adaptive behavior.
MEMMO is organized around 3 applications designed by the end-user partners of the project: 1) a humanoid robot performing advanced locomotion and industrial tooling tasks for aircraft assembly; 2) an advanced exoskeleton paired with a paraplegic patient demonstrating dynamic walking on flat floor, slopes and stairs in a rehabilitation center; and 3) a quadruped robot performing inspection tasks in a construction site.
In MEMMO, Idiap is responsible of the research aspects related to the representation and encoding of movements. The objective is to compress motion data for fast recognition and adaptive motion synthesis. This will be achieved by extracting invariant structures in a probabilistic form that can be used to generalize movements to new situations (new environments, new contexts, new initial conditions). Models will be developed to facilitate integration between learning and control, with trajectory distributions (incl. the underlying cost functions) that are adapted to the current situation and can be used to quickly generate trajectory samples for further optimization.
---
About Idiap:
Idiap is an independent, not-for-profit, research institute recognized and funded by the Swiss Federal Government, the State of Valais, and the City of Martigny. Idiap offers competitive salaries and conditions at all levels in a young, high-quality, dynamic, and multicultural environment. Idiap is an equal opportunity employer and is actively involved in the "Advancement of Women in Science" European initiative. The Institute seeks to maintain a principle of open competition (on the basis of merit) to appoint the best candidate, provides equal opportunity for all candidates, and equally encourage both genders to apply.
Idiap is located in the town of Martigny in Valais, a scenic region in the south of Switzerland, surrounded by the highest mountains of Europe, and offering exceptional quality of life, exciting recreational activities, including hiking, climbing and skiing, as well as varied cultural activities. It is within close proximity to Lausanne and Geneva. Although Idiap is located in the French part of Switzerland, English is the official working language. Free French lessons are also provided on a complimentary basis.
For frequently asked questions (FAQs) about living in Switzerland, please go to http://www.idiap.ch/en/faq
Last modified: 2017-09-27 22:29:33